
7 -A&40~ KS: AN ARTIFICIAL INTELLIGENCE
APPROACH TO FLEXIBLE- 1/1

SIMULATIONWU) CARNEGIE-MELLON UNIV PITTSBURGH PA
ROBOTICS INST V V REDDY ET AL. 14 SEP B2

UNCLASSIFIED CMU-RI-TR-B2-i F/G 9/2 N

Im hhhi
EhhhhhhhhhhE-I

somAEIIEIIosa

' 11.0 _
8

U3o

1.25 1111_1A

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

.-

SCarnegie-Mellon University

KBS: AN ARTIFICIAL INTELLIGENCE APPROACH TO
FLEXIBLE SIMULATION

I
Y.V. Reddy and Mark S. Fox

The Robotics Institute
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

" '~~~~~ H' , /' '£ 1E83

,.: :,THEy
ROBOTICS

CMu.,,.,,.,2., INSTITUTE

4

V AUiITY :LASCA TIJ 1 q O3 h6IS PaIE 'W, n Do?& Enfed)

REPORT DOCUMENTATION PAGE I READ INSTRUCTIONS
PBEFORE CO!PLETING FORM

1. REPORT NU)ABER i2. GOVY ACCESSICN No. 3 RECiPiENT'S CATALOG NUMBER

CMU-RI-TR-82-1 I
4. TITLE (and Subtle) 5. TYPE OF REPORT 6 PERIOD COVERED

KBS: AN ARTIFICIAL INTELLIGENCE APPROACH TO Interim

FLEXIBLE SIMULATION 6. PERFORMING ORG. REPORT NUMBER

7. AUTmOR(e) 8. CONTRACT OR GRANT NUMBER(e)

Y.V. Reddy and Mark S. Fox

9. PERFORMING ORGANIZATION NAME AND ADDRESS S0. PROGRAM ELEMtENT. PROJECT. TASK

Carnegie-Mellon University AREA WORK UNIT NUMBERS

The Robotics Institute

Pittsburgh, PA. 15213

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

22 February 1982
Office of Naval Research 13. NUMBER OF PAGES

Arlington, VA 2217 31

14. MONITORING AGENCY NAME & AODRESS(i1 dilflerent from Controlling Ofiice) I15. SECURITY CLASS. (of this report)

UNCLASSIFIED

_13&. DECL ASSIFICATION/OOWNGRADINGd t SCHEDULE

i6. OISTRIBUTION STATEMENT (of'this Report)

SThisdocument has been approved
Ior public release and sale; its

[i _ itio is unli mited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. If different from Report)

Approved for public release; distribution unlimited

I0. SUPPLEMENTARY NOTES

I

19. KEY WORDS (Continue an leve&eD jptoe i necessary and Idently by biock number)

20. ABSTRACT (Continue on reverse side If necesarJy and identity by block nmber)

DD A 1473 EDITION OF I NOV UNCLASSIFIED
S/N 0102-014-46011 8ECURITY CLASSIFICATION OF THIS PAGE (*hen Date Nntord)

*

. -"-

KBS: An Artificial Intelligence Approach to
Flexible Simulation

Y.V. Reddy and Mark S. Fox

The Robotics Institute
Carnegie-Mellon University
Pittsburgh, Pennsylvania

14 September 1982

Abstract: This report describes KBS, a Knowledge-Based Simuldtion system. The report describes
the use of SRL, an Al.based knowledge representation system for modelling (e.g.,
factory orginizations),' and its interpretation for discrete simulations. KBS
provides facilities for interactive model creation and alteration, simulation
monitoring and control, graphics display, and selective instrumentation. It also
allows the user to define and simulate a system at different levels of abstraction,
and to check the completeness and consistency of a model, hence reducing
model debugging time.

Copyright @ 1982 CMU Robotics Institute

This research was supported in part by the Westinghouse Corporation, and by the CMU Robotics
Institute.

This is a new revised version.

I

4

Table of Contents
1. Introduction 1
2. Knowledge-Based Modeling and Simulation 2

2.1. Modeling Entities and Relations 4
2.2. Rules of Behavior 8
2.3. Model Libraries 9
2.4. Simulation Via Model Interpretation 11

3. An Example 11
4. Model Instrumentation 15
5. Circuit-Board Production Example 16
6. Model Consistency and Completeness 22
7. Multi-level Simulation 27
8. Conclusion 29
9. References 30

"..,

- .

*. 'O ., , .*4
bF

List of Figu res
Figure 2-1: Machine Schema 5
Figure 2-2: Machine Schema with values 5
Figure 2-3: Machine Schema with facets 6
Figure 2-4: Machine Schema with characters 7
Figure 2-5: Continuous-Machine Schema 7
Figure 2-6: nc-drill Schema 8
Figure 2-7: nc-drill-1 with PART-OF 8
Figure 2-8: Load Schema 8
Figure 2-9: load-rule Schema 9
Figure 2-10: Agent Hierarchy 10
Figure 2-11: An Example of an Event Notice 11
Figure 3-1: discrete-machine Schema 12
Figure 3-2: machine1 Schema 12
Figure 3-3: machine2 Schema 13
Figure 3-4: queue1 Schema 13
Figure 3-5: Schema Definition for the Current Model 13
Figure 3-6: arrival-rulel Schema 14
Figure 3-7: prime-rule Schema 14
Figure 3-8: Calendar Schema After Execution of Prime Event 14
Figure 3-9: eventi Schema 15
Figure 3-10: event3 Schema 15
Figure 4-1: Data Gathering Rules 16
Figure 4-2: D!ply Instrumentation 17
Figure 5-1: work-area Schema 17
Figure 5-2: discrete-machine Schema 18
Figure 5-3: Load Rule for Discrete Machines 19
Figure 5-4: Operation Schema 19
Figure 5-5: Initialization of Simulation Display 20
Figure 5-6: Simulation Snap-shot 21
Figure 5-7: Model Query 22
Figure 5-8: Display of An Order Query 23
Figure 5-9: Pcboard Factory Layout 24
Figure 5-10: Layout of a single Work Area 25
Figure 6-1: for-all schema 27
Figure 6-2: there-exists schema 27
Figure 7-1: machining Schema 28
Figure 7-2: milling Schema 28
Figure 7-3: grinding Schema 29
Figure 7-4: polishing Schema 29

1. Introduction
In the summer of 1980 we began the study of problems in managing complex organizations such as

job-shop factories. Our purpose was to discover where intelligent systems may aid in the
achievement of organizational goals. Our analysis resulted in the formation of the Intelligent
Management System (IMS) Project (Fox, 1981). IMS is a long-term project concerned with applying

* artificial intelligence techniques in aiding professionals and managers in their day to day tasks.
"" Research in IMS is proceeding in many areas, including: job-shop scheduling, flexible simulation,

-*,process diagnosis, organization modeling, and user-interfaces. This paper discusses flexible
simulation research in IMS.

A commonly occurring problem in management is the inability to answer "what if" questions

readily. In a survey of questions posed by managers in three plants, many were concerned with the

effect of proposed changes in factory organization. Some could be answered based upon previous
experience, some by analysis, but many went unanswered. Why do these questions remain
unanswered when tools exist for analyzing organizations. In particular, simulation systems are used
to measure performance of existing or proposed systems which are too complex to be studied
analytically. It is the cost of construction that limits their use, and resulting systems are little used
except when running the same or similar simulations again. More importantly, simple "what if"
questions cannot be answered readily. A manager requires an intermediary, such as a system
analyst, to answer them. There is a definite need for more sophisticated tools for analyzing
organizations, and for providing usable tools directly to the managers and professionals.

In this paper we describe KBS, a Knowledge-Based Simulation system'. Our reasons for creating
yet another simulation system are numerous. In particular, issues we have explored in KBS include:

*creating a system modeling language that simultaneously support multiple
applications in addition to simulation. Thus eliminating the need and cost of maintaining
multiple models.

*representing the behavior of system entities directly in the model. This admits total
flexibility in creating and altering entities and their behavior, without altering the
simulation model interpreter.

" allowing the system to be selectively instrumented. This restricts data analysis to areas of
4 interest, and provides support of graphics displays.

* representing the system at multiple levels of abstraction. This allows the user to specify
the level of simulation and the detail-level of results.

4 *• consistency and completeness checking. Much time is spent verifying that models are
consistent and complete. We have developed a checker which detects model
incompleteness and inconsistencies.

* providing interactive access to the model building and simulation system. This appears

tThe term "Knowledge-Based Simulation" has appeared before in the research of Klahr & Fought (1980), in describing
another artificial intelligence approach to simulation.

2

to reduce model building time, and provide a more intimate understanding of the
simulation.

The rest of the paper describes KBS. The next section provides an overview of knowledge
representation, and SRL (Fox, 1982), the language used to build the system described in this paper. It
also introduces the concept of simulation as an interpretation of a knowledge base. Following by an
example of a simple model with two machines. Data gathering and display model instrumentation are
then discussed. Next, model libraries containing domain specific knowledge, and a detailed model of
a circuit board production factory are presented. Lastly, model acquisition process and multi-level
simulation are discussed.

2. Knowledge-Based Modeling and Simulation
A primary focus of our research has been the underlying modeling theory2, because the model

dictates the applicability and ease with which simulations can be constructed. In examining current
modeling techniques, a variety of simulation modeling theories and methodologies have been

*. introduced over the years. These systems can be classified as:

* Programming languages,

* Extended Programming Languages, and

* Special purpose packages.

Simscript II (Kiviat, 1969) and Simula (Dahl,1967) fall into the category of extended programming
languages since they provide a total programming environment in which the usual programming
constructs are augmented with simulation oriented language constructs such as queues, events
and entities. These facilities make it easier to specify a model as opposed to a general purpose
programming language such as FORTRAN or PASCAL. But they provide maximum flexibility at the
cost of considerable programming effort.

GASP (Pritsker,1974) and DESPL/1 (Reddy, 1973) also belong to the class of extended
programming languages since they extend the facilities of a general purpose programming language
by adding preprocessors or subroutine packages to implement simulation features.

On the other hand, systems such as GPSS (IBM,1970) provide a flowchart type of facility which is
easy to use but provides limited flexibility, since it is not embedded in a rich programming
environment. Systems such as GERT (Pritsker,1977), RESO (Sauer,1978), BORIS (Wendt,1980)
and IMS (Roberts,1980) are designed to provide model building facilities without extensive
programming knowledge. these systems have their own limitations in that they take a particular
approach such as a queueing network or Petrinets (Zisman,1978). DEMOS (Birtwistle,1980) is an
extreme example of building a simulation system in that it extends another sinmulation language,
SIMULA, to make it easier to build models.

2In this paper we restrict ourselves to discrete event simulation systems.

3

A central theme of these systems is "How to make model building effortless?". However, they
suffer from a number of drawbacks, such as lack of flexibility in expressing a model structure and
requiring extensive programming effort. For example, in GPSS the programmer is restricted to the
concepts of facility, transaction and queue and the model is to be constructed as a flowchart using

F: these blocks. Also the there are no facilities for the selective collection of statistics. In programming
systems such as SIMSCRIPT 11 and SIMULA the structure of the model is embedded in the program
which realizes the model and thus any structural changes to the model require program modification.

Also, most of the current modeling systems are batch oriented which puts severe limitations on the
model optimization process. A model is generally conceived by management personnel who have
little programming expertise and thus requires the services of a programmer to translate the model
into a program. Often the programmer has little understanding of the system being modelled.
Because the various modeling assumptions are hardwired into the code, the model builder cannot be
expected to verify whether all the assumptions have been faithfully translated into code. In addition,
even small structural changes to the model turnout to be major programming projects.

The goals of IMS include the integration* of functionality such as simulation, scheduling, and
diagnosis into a single, distributed system, and making all functions accessible to managers and
professionals. In order to accomplish integration we sought to create a "single" model of the
organization (system) that is accessible by all IMS functions, including simulation. To achieve this, we
had to develop a method of modeling that is

* rich in the modeling concepts it can represent, hence easing the mapping from domain to
model.

* easily extendible if the modeling system does not fit the domain.

e understandable by all functions that wish to access the model. That is, the semantics of
the model are embedded in the model, and not the programs that manipulate it.

The approach taken was to use an Artificial Intelligence (AI) knowledge representation system in
which a library of entities can be created and instantiated, defining both attribute and behavioral
descriptions. In order to answer "what if" questions, the knowledge base should contain various
facts about each entity in the system and its relationship to other entities, and process knowledge
about the effect of actions in the system. It should also include knowledge about the relationship
between entities and consistency specifications. For example, the knowledge base should contain the
fact that to perform a certain operation on a work-piece, we need a machine/operator capable of
performing that operation. Another piece of information may be that the state of a machine changes
from "busy" to "free" when it unloads its current work-piece. In addition to this general knowledge,
the knowledge base should contain specific information about a system such as "operation o-150x is
done by machine m-nc-drilll"

in order to achieve user accessibility, we sought to add to the knowledge representation system
functions that provide the following characteristics:

* Creation of models should require little programming effort. The modeling system should
have or allow the creation of entities that match the concepts of the domain being

;;.- 4

modelled.

e The model creation and alteration interface should be interactive.

* The model should be selectively instrumentable in order to gather and analyze data, and
to provide run-time output.

" The model should be alterable during the simulation run to allow the real-time testing of
hypotheses.

* The model should be automatically examined for consistency and completeness. This
reduces the amount of model debugging.

A number of knowledge representation languages such as KRL (Bobrow & Winograd, 1978), Klone
(Brachman, 1978), NETL (Fahlman, 1978) have been used in various artificial intelligence systems.
This system is implemented in SRL (Schema Representation Language) (Fox, 1982), which runs

* under the VAX FRANZ lisp system (Foderaro, 1980). The rational for choosing an Al knowledge
representation language is two fold. First, research in knowledge representation has been concerned
with the representational semantics of knowledge in general. Thus the meaning of information in the
model is embedded in the model, and not in the functions that access it. Second, knowledge
representations are both flexible and extendible. Alterations to existing information in models does
not necessarily require massive reorganization of the model structure. And new information (e.g.,

"* entities, relations, etc.) can be added, again without major alteration.

The approach taken in KBS is similar to another Al-based simulation system called ROSS (Klahr.&
Fought, 1980). Both KBS and ROSS are object oriented modelling system which contain attribute and
behavioral descriptions, and provide interactive access and display. They differ in that KBS separates
the model from its interpreter. The model is the kernel of IMS, and must support a variety of functions
including factory monitoring, scheduling, and question-answering, in addition to simulation. Hence,
KBS is an internreter which accesses the model, providing simulation, model checking, and data
analysis capabilities.

2.1. Modeling Entities and Relations
"4 The IMS modeling system provides the following features:

* The model is composed of declarative objects and relations which match the users
conceptual model of the organization.

* The modeling system provides a library of objects and relations which the user may use,
alter, and/or extend in their application.

e The model incorporates a variety of representational techniques allowing a wide variety
of organizations to be modelled (continuous and discrete). And it is extensible, allowing
the incorporation of new modeling techniques.

* The user interactively defines, alters, and peruses the model.

5

• The model can be easily instrumented. For example, the model can be diagramatically
displayed on a color graphics monitor at different levels of abstraction. The complete
organization, or parts thereof, can be viewed with summaries (e.g., queue lengths, state).

* The modeling system is simple to learn to use because the modeling tools match the
concepts people use to think about problems.

The basic unit for representing objects, processes, ideas, etc. is the Schema. Physically, a
schema is composed of a schema name (printed in the bold font) and a set of slots (printed in small
caps). A schema is always enclosed by double braces with the schema name appearing at the top.

{{ Machine

CAPACITY:

OPERATOR:

CONTENTS:

LOAD:

UNLOAD:
INPUT-Q:

OUTPUT-Q:

SERVICE-TIME:))

Figure 2-1: Machine Schema

The Machine schema (figure 2-1) contains eight slots, some which define physical limitations of the

machine, i.e., CAPACITY, some which define its current status, i.e., OPERATOR, and some which define
event behavior, i.e., LOAD. Slots can have simple values (figure 2-2).

{{ Machine

CAPACITY: 3
OPERATOR: joe
CONTENTS: lot-29
LOAD:
UNLOAD:)1

Figure 2-2: Machine Schema with values

6

Schemata can be more complex. Each slot has a set of associated facets (printed in italics) (figure
2-3). The Restriction facet restricts the cype of values that may fill the slot. The Default facet defines
the value of the slot if it is not present.

{{ Machine

CAPACITY:

Value: 3
OPERATOR:

Value: joe
CONTENTS:

Restriction: (TYPE is-a product)
LOAD:

Restriction: (SET (TYPE is-a rule))
Default: load-rule

UNLOAD:

Restriction: (SET (TYPE is-a rule))
Default: unload-rule

Figure 2-3: Machine Schema with facets

And each filler of a facet may have one or more pieces of meta-information termed characters
(printed underlined) (figure 2-4). The Filler character defines the value of the facet. Creator defines
who created the filler, and Creation-Date defines when the filler was created. An important aspect of
SRL is that schemata may form networks. Each slot in a schema may act as a relation tying the
schema to others. The schema may inherit slots and their fillers along these relations. Consider the
schema for a Continuous-machine. Figure 2-5 defines a CONTINUOUS-MACHINE which works much
like a pizza oven, it can be continuously filled up to capacity. A Continuous-Machine IS-A
Machine. The IS-A relation between the two schemata allows Continuous-Machine to inherit
attributes (slot names) and their values from the Machine schema. The LOAD slot defines the
behavior of the machine when a load event occurs. The loading rule tests whether the machine has
capacity, if so the object is placed in the machine, otherwise it is queued.

Another type of inheritance relation used by KBS is part-of. The part-of inheritance relationship
may be used to define spatial relationships such as layout of a factory. Figure 2-7 redefines nc-drill-1
as being both an instance of an nc-drill (figure 2-6) and part of the work area drill-room.

SRL provides the model builder with the ability to define new schemata and slots, and to define the
inheritance semantics of slots which act as relations. This includes defining what information, i.e.,
slots and their values, is inherited, not inherited, and altered when inherited.

6I

. - -- ., J,. -

7

{{ Machine

CAPACITY:

Value:
Eile: 3
Creator: shop-supervisor
Creation-Date: 22-OCT-79

OPERATOR: - -'

Value:
Filler: joe

CONTENTS:

Restriction:
.ilr: (TYPE is-a product)

LOAD:

Restriction:
Filler: (SET (TYPE is-a rule))

Default:
Filler: load-rule

UNLOAD:

Restriction:
Filler: (SET (TYPE is-a rule))

Default:
Filler: unload-rule

Figure 2-4: Machine Schema with characters

{{ Continuous-Machine
{ IS-A Machine

USED-CAPACITY:

LOAD: {{ INSTANCE # rule
IF: (< USED-CAPACITY CAPACITY)

THEN: (fill USED-CAPACITY (+ 1 USED-CAPACITY))
(add object CONTENTS)

ELSE: (add object QUEUE) }}

}

i Figure 2-5: Continuous-Machine Schema

8

{(nc-drill
{ IS-A machine

LOAD: nc-load
UNLOAD: nc-unload 1))

Figure 2-6: nc-drill Schema

{{ nc-drill-1
(INSTANCE nc-drill }

{PART-OF drill-room I)

Figure 2-7: nc-drill-1 with PART-OF

2.2. Rules of BehaVor
The LOAD and UNLOAD slots.represent events that can take place at an nc-drill. Both LOAD (figure

2-8) and UNLOAD exist as schemata whose relations define them as both slots and events.

{(load
{ INSTANCE slot)

*Q { IS-A event I}

Figure 2-8: Load Schema

The behavior that is to be displayed by an entity when the event occurs is defined by the fillers of the

associated event slot. The filler of the LOAD slot is a rule which defines the object's event behavior. A
rule has two parts, IF which tests the applicability of the rule, and a THEN slot whose contents are

executed when the rule is applicable. The contents of these slots are either other schemata (i.e.,
* rules or functions), or lisp code. Figure 2-9 defines how a machine is loaded. It is important to note

that a rule provides a behavioral description of an event at the level of detail defined by the entity. No
more, no less. If the entity is an abstraction of a more detailed description, then the rule is also an

9

{{ load-rule
{ INSTANCE rule

iF: state = free &
contents of input-source not empty

THEN: select object to be loaded &
update contents &
change state to busy &
execute statistics-rule.

ELSE: do nothing. })}

Figure 2-9: load-ruleSchema

abstraction. Entities, events, and their behaviors can be successively refined into more detailed
descriptions. The implication of this refinement process on simulation will be discussed later in the
paper.

2.3. Model Libraries
Using SRL, we can define a. set of schemata representing various types of generic objects,

* processes, behavioral rules and scheduling algorithms relevant to many domains, and store them in a
model library. Once this library is created, specifying an individual model consists of instantiating
relevant schemata from the library. The user may also add to and/or alter library schemata,

". depending on their simulation needs.

The schemata for various objects and processes are arranged in a hierarchy where, each schema
may inherit the slots and values from schemata directly above them in the hierarchy. For example,

" schemata representing various machines and "agents" (such as operators) and inspectors can form
*. a schema hierarchy where, at the highest level there is a schema: agent (figure 2-10). This schema

represents anything that performs an operation. At the next level, there are three schemata:
machine, manual-agent and man-machine-agent. These represent refinements of the agent

' schema and represent an operatorless machine, an inspector/manual operator and an operator
assisted machine respectively. Each of these schemata, inturn can be refined to represent
specialized objects such as numerically controlled machines and semiautomatic machines. Similarly,
we can create a hierarchy of schemata representing various types of storage areas such as queues

and random access storages3 .

In addition to the various schema hierarchies representing different concepts in a factory domain
we need a set of schemata to describe various events representing the behavior of the model. These

schemata are represented as rules some of which we have already encountered in earlier sections.
For example the model library may contain the following behavioral rules for a factory modeling

3The refinement and alteration of schemata is described in (Fox, 1982).

i"

* 77 . 7.

10

man- machine
#macine manual-agent

Ell l~get (reqUires an
operator)

mahie#continous dean -n # op.erator- starte
#disc rete- mciemachine (performs a Imachine

(e~g.oven)specific function)

clock- driven. Ht#general- manual #operator.
frequ e y (operates___#multi-____________agent _____________________ Is itd _____________________

atacran machine~oeae (performs many (needs operatoratraqernmahin fun ct on to perform)

0 submachines)

Figure 2-10: Agent Hierarchy

4 11

environment: discrete-load-rule and continuous-load-rule may be refinements of the schema:
rule, and represent the concept of loading discrete and continuous machines respectively. In
addition to these behavioral rules, we can have a number of rules representing various scheduling
philosophies. For example, there may be a rule to represent a global scheduler for handiing output
from all machines in the model.

2.4. Simulation Via Model Interpretation
The simulation model is driven by a clock. The clock is advanced to the current time each time an

event is executed. The occurrence of an event is represented by an event-notice. Event notices
representing future events are stored in a calendar ordered by their expected time of occurrence.
For example an arbitrary event: event23 can be specified as shown in figure 2-11.

I

{{ event23
{ INSTANCE event-notice

EVENT-TIME: 2.8
EVENT-NAME: load

EVENT-FOCUS: m-nc-drilll
EVENT-PARAMS: order23 } 11

Figure 2-11: -An Example of an Event Notice

This schema represents an event called load to occur when clock shows 2.8 units of time. The event

is related to the object called m-nc-drilll. It may be interpreted as:

load m-nc-drlll1 with order 23 at 2.8

What happens when the above event occurs is defined by the rules in the LOAD slot of nc-d rill1.

The calendar is represented by a calendar schema. Scheduling an event simply consists of
4 Iinserting the event notice in the EVENT-LIST slot of calendar in the appropriate place. Execution of an

event involves execution of the rules in the slot denoted by EVENT-NAME in the schema represented by
EVENT-FOCUS slot of the event notice.

3. An Example
In this section we describe the realization of a simple simulation model using the knowledge

representation approach. The model consists of two machines, machine1 and machine2, and two
queues, queuel and queue2. machinel (figure 3-2) is of type discrete-machine (figure 3-1)
which is a sub-type of the schema machine. This type is used to represent machines which can

I process one object at a time. The LOAD and UNLOAD rules associated with this type are also
refinements of the schema load-rule, queue1 (figure 3-4) and queue2 are of the type fifo-queue
which is a refinement of the type queue. The model represented by these schemata is a "two-stage

"|

12

({ disc rete-machine
(IS-A machine

LOAD: discrete-load-rule
UNLOAD: discrete-unload-rule }}

Figure 3-1: discrete-machine Schema

single server queueing system". Objects that enter queue1 are served by machine1 and passed on
to queue2 where they are processed by machine2 and passed on to the next stage (if one exists).

There also exists a system schema to provide information about the simulation model itself. The
actions to initialize the model are specified by the value of the slot: PRIME in the schema
two-stage-queueing-model shown in figure 3-5. The value of the slot: START-SIM specifies the
required actions to start the execution of the model.

The various actions that take place during the course of model execution cause "event-notices" to
be created and deposited in the calendar schema. Execution of events specified by the event-notice
are realized by the following steps:

* Identify the schema which is the focus of this event-notice.

e Extract the rules from the slot with the name of the event-type.

* Evaluate the rules.

{{ machine1
A INSTANCE discrete-machine

INPUT-O : queuel
OUTPUT- : queue2
SERVICE-TIME: 0.5)))

* Figure 3-2: machine1 Schema

Having defined the various schemata representing the components of the two stage queueing
* model and its associated rules, we are now ready to describe the detailed operation of the model.

Initially, the EVENT-LIST slot of calendar contains prime-event. Hence, the first action taken by

13

{(machlne2
{ INSTANCE continuous-machine

INPUT-O: queue2
OUTPUT-0: queue3
SERVICE-TIME: (FUNCTION time)
CAPACITY: 5 1))

Figure 3-3: machine2 Schema

{{ queue1
{INSTANCE fifo-queue

SOURCE: nil
DESTINATION: machinel
ARRIVES: arrival-rulel } }}

Figure 3-4: queue 1 Schema

{{ two-stage-queueing-model
{INSTANCE system

PRIME-EVENT: prime-rule
TOTAL-TIME:

TOTAL-EVENTS:) 11

Figure 3-5: Schema Definition for the Current Model

KBS is to execute the prime-rule (figure 3-7). Prime-rule has a true condition, hence the THEN slot

is evaluated. It contains the function read-orders which reads orders in from a file, creates a schema
for each, and possibly schedules an event for each order. In this example, each order results in an
arrival event at queue 1.

At this stage the calendar contains event notices as shown in figure 3-8. The schema definition for
the event notice event I is shown in figure 3-9.

V14

{{ arrival-rulel
.INSTANCE rule

IF: (status of machine = free)
THEN: (schedule a load for the machine) }))

Figure 3-6: arrivdl-ruie1 Schema

{{ prime-rule
{ INSTANCE rule

IF: (t)
THEN: (Function read-orders order-file) I }}

Figure 3-7: prime-rule Schema

{{ calendar
{ INSTANCE priority-queue

EVENT-LIST: (event1, event2, event3, ...) } }}

Figure 3-8: Calendar Schema After Execution of Prime Event

The simulation continues by removing the first event notice, event1, found in calendar and
interpreting it. The event states that order1 "arrives" at queue 1 at time 0. To interpret the "arrives"
event, KBS evaluates the contents of the ARRIVES slot in queue 1 schema. In this case it is the rule:
arrival-rulel (figure 3-6). As can be seen from the definition of arrival-rulel, if the machine is free,
the THEN slot causes an event notice to be generated and put on the calendar (EVENT-TIME: 0.0;

EVENT-NAME: LOAD; EVENT-FOCUS: machinel; EVENT-PARAMS: order1). This event is executed by
evaluating the "rule" associated with the LOAD slot of machine 1. Since machine 1 is defined to be of
the type discrete-machine, it will inherit the "load rule" associated with machines of that type. This
results in "scheduling" of a future event to unload machine1. This is shown in figure 3-10. When
event3 (see figure 3-10) is executed by evaluating the "unload rule" this will cause two more events:
event4 (to load machinel) and event5 (to cause order1 to arrive at queue2). Each of these events

hA -~ *, A S. , . , , . , . - • . / .. .: : . :. : - -' ... , . - . / i . -... :

15 ' **

{{ event1
{ INSTANCE event-notice

EVENT-TIME: 0.0
EVENT-NAME: arrives
EVENT-FOCUS: queuel
EVENT-PARAMS: order)))

Figure 3-9: event1 Schema

{{ event3
{ INSTANCE event-notice

EVENT-TIME: (current-time + service-time)
EVENT-NAME: unload
EVENT-FOCUS: machinel
EVENT-PARAMS: order1)))

Figure 3-10: event3 Schema

will inturn cause further events (event4 will cause event6 to unload order2 and event5 will cause
event7 to load machine2 with order1). This chain of events will continue until the simulation is
halted for lack of "outstanding notices", or because of meeting prespecified conditions.

4. Model Instrumentation
-4 The purpose of executing a simulation model is to gather data representing the performance of the

system under study. Most simulation systems provide a standard set of statistics. KBS provides two
approaches to data gathering and analysis. The first approach is similar to other systems. A library of
routines are provided to do post simulation analysis. The second approach allows user-specified,
selective instrumentation of models.

In the model, data gathering and analysis can be specified by identifying the schemata and slots in
which the data resides. Rules can be associated with slots. These rules will be evaluated whenever
the contents of a slot change. Queue sizes, processing times, etc. can be recorded by associating

* data gathering rules with the appropriate slots.

Figure 4-1 shows how machine1 can be instrumented to determine how many orders were

16

processesed. The if-added facet is filled with a rule which computes the required statistics. The
contents of an if-added facet are evaluated whenever the value of a slot is altered. This modification
will ensure that whenever the value of the slot STATE of machine1 changes the rule count-orders
will be executed.

{{ machinel
{ INSTANCE discrete-machine

STATE:
If-added: count-orders))

Figure 4-1: Data Gathering Rules

Model instrumentation allows the experimenter to selectively analyze the simulation. For example,
if only machine1 is of interest, then an If-added rule is placed in the appropriate slot of machine 1. If
all machines are to be analyzed, then an If-added rule is to be place in the slot of the machine
schema, and all sub-types and instances of machine will automatically inherit the rule, enabling data
to be gathered for all of them. Selective instrumentation reduces the amount of computation devoted
to data gathering and analysis, when the question to be answered is restricted in nature.

In a batch oriented simulation model, the only output that is available is a listing of the statistics
collected during the model execution. In an interactive model, one can watch the simulation model as
it is executing. KBS provides a display which may be divided into a number of windows each
displaying a different aspect of the model. For example one window may be displaying an event-trace
while another displays the history cf a machine. In addition to watching the simulation model as t is
running, one can interact with the model and change parameters and/or specify new information to
be displayed.

The specification of what to display can be handled in much the same way as the specification of
4statistics using the If-added facet. For example, if we want to display the history of machine 1 we can

modify the machine1 schema as in figure 4-2. Figure 5-6 is an example of a display from the
simulation model described in the section 5. The lower left hand corner shows the history of particular
order in the model.

5. Circuit-Board Production Example
In this section, we discuss the model of a circuit-board production factory, built using SRL. The

model is abstracted as follows:

The factory consists of a number of areas (work areas, service areas, offices etc.) where
different activities take place. Different machines are located in work areas and perform
individual operations. A circuit-board is produced by performing a series of operations on
the raw material. All work pieces waitino for an operation wait in a queue in front of a

17

((machine1
(INSTANCE disc rete-machine

HISTORY:
If-added: display.history-rule)}}

Figure 4.2: Display Instrumentation

collection of machines or in a centralized in-process storage. The flow of work is
controlled by the "operation-iineup" associated with the product being manufactured. The
operation-lineup specifies the sequence of operations which will be used to schedule the
next operation to be performed on the work-piece. The factory is configured such that
"work-pieces" flow to various work-areas on a centralized conveyor system. If there is no
space for a work-piece in a given work-area, it is stored in a centralized in-process storage
from which it could be recalled when needed.

Construction of a model reflecting this level of abstraction involves two steps:

e Instantiation of generic schemata from the model library.

* Construction of special functions for scheduling; "priming" the model and specification
of desired performance statistics.

The model described in this section consisted of 17 work-areas, 48 machines (both discrete and
continuous), 34 queues and 30 different operations.

A work-area (figure 5-1) defines an area of the factory which contains machines and/or
operators. Several types of operations may be performed in a given work area.

I
((work-area

MACHINES:

OPERATIONS:

LOCAL-QUEUES:
CAPACITY:
CURRENT-CONTENTS:
HISTORY: }}

Figure 5-1: work-area Schema

4

I.

18

This schema is used to monitor the activity in a given work-area. For example, by attaching an
if-added rule to the slot: current-contents we can perform any function such as display whenever
a work-piece enters or leaves a work-area.

The machine schema is used to describe a machine which loads and unloads work-pieces to
perform operations.

{{ discrete-machine

{ IS-A machine
LOAD: discrete-load-rule
UNLOAD: discrete-unload-rule
P-UNLOAD: p-unload-rule
SETUP: setup-rule
START: start-rule
MAINTENANCE: maintenance-rule
BREAKDOWN: breakdown-rule
SERVICE-TIME:

Restriction: (TYPE is-a FUNCTION)
INPUT-RULE:

Default: fcfs-input-rule
LAST-MAINTAINED:

Default: 0
LAST-BREAKDOWN:

Default: 0
MTBF:

Default: INFINITE
CONTENTS:

STATE:

Restriction: (OR ready free busy stopped under-maintenance)
STATISTICS: statistics-rule
HISTORY: history } 11

0

Figure 5-2: discrete-machine Schema

* A discrete-machine (figure 5-2) is generic to the model. Actual machines are subtypes, e.g., nc-
drill, or instances of it. Schemata representing individual machines inherit their event rules from
schemata at higher levels in the schema hierarchy. The discrete-load-rule (figure 5-3) associated
with the LOAD slot of a discrete-machine specifies the conditions that have to be satisfied for
loading to take place and the associated actions that follow.

0

The operation (figure 5-4) schema is used to specify details about individual operations.
Operations can form a di-graph by linking them via their PREVIOUS.OPERATION and NEXT-OPERATION

19

{f DISCRETE-LOAD-RULE
{ INSTANCE rule

IF: state = free & input-source = not empty
THEN: ask input-rule &

update contents slot &
change state to busy &
execute statistics-rule) }}

Figure 5-3: Load Rule for Discrete Machines

{{ operation
OPERATION-NAME:

PERFORMED-BY:

PRECONDITION:
POSTCONDITION:
CO-CONDITION:

PREVIOUS-OPERATION:
NEXT-OPERATION:

SUB-OPERATION:

INTERRUPT-RULE:
Comment: (What to do if this is interrupted) }}

Figure 5-4: Operation Schema

slots. For each order (i.e. a collection of circuit boards), the scheduler assigns the first operation to
be performed. The machine that can perform this operation is ascertained from the operation

schema. Subsequent operations are determined by looking at the NEXT-OPERATION slot of the current
operation.

In addition to the instantiation of various schemata described above, we need a set of functions
*which are specific to a given model. These include functions for the "prime-event", "scheduling" and

"service-time" computations. The prime-event function specifies initial actions that should take place

and scheduling function specifies the type of scheduling used in the given model. Service-time

function specifies how to compute the operation time for each machine as a function of the "work-
order".

20

The database constructed using these schemata is used to collect performance statistics by
selectively instrumenting the model 'as described earlier. The performance statistics collected
include:

* Machine utilization

; Congestion measure for each work-area

* History of each machine

* Current production

In KBS, a number of facilities are provided for monitoring the progress of the simulation, and for
performing queries of machine and order status.

'MURET START SIMIULATION COMMANDS
-

CURRENT RUN rIE ---.A.ETE-.

I

. Figure 5-5: Initialization of Simulation Display

Figure 5-5 shows the display screen before starting the simulation. The display screen is divided into

three parts. The top window shows the available commands. The middle window shows the current
default settings such as which order will be tracked. These defaults can be changed using the

I

. - , .- - -,- ,- --- -. .-. . - . - --. . " ' i , / / ' ' • : / :: - - : i

21

parameters command shown in the top window. The db-query command will permit perusal of the
model database. The start-sim command will start simulation execution. The bottom window is used

- for command entry. At any stage a carriage return will provide help, and exit command will return the
program to the previous level in the command hierarchy.

SAL rInORE-PCBOARD-FACTORy-MoOEL

V NT

I HISOR

1*

Figure 5-6: Simulation Snap-shot

Figure 5-6 shows a snap-shot of simulation. In this the display is divided into six windows. The top
left window shows the applicable commands. The top right window provides an event trace. The
bottom left window provides the history of a selected order, i.e., the history of loads and unloads of
order-dsOl. The bottom right window provides a histogram of traffic in the selected work area. The
bottom most window is used for selecting commands.

Figure 5-7 shows the display screen when a model query is selected. The top window shows the
various types of queries that can be performed. The queries can be of the report type or of an
individual type. The report type query displays statistics about a class of objects such as machines,
where as individual type queries display information about an individual object. The bottom window
displays a machine report consisting of busy time, percent utilization and number of orders
processed. Figure 5-8 displays a query about an individual order. Individual queries can also refer to

CURRENT REPORT COMMANDS

I H-7

sachinl prdc mahn utlzto repor

Figure 5-7: Model Query

machines to find the order they are currently processing. Apart from the simulation process a

separate graphics display process may also be concurrently executed to show the state of simulation
by changing the color of the machines as they change their state. It can also display the number of

orders present in any work area. Figure 5-9 shows the layout of the entire factory. Figure 5-10 shows

I the close-up of one work area and the machines located in that area.

6. Model Consistency and Completeness
A recurring problem in simulation systems, including KBS, is maintaining model consistency and

completeness. We found that much time is wasted discovering errors and holes in the model. To

deal with this problem, we constructed a language and an interpreter for specifying model

consistency and completeness rules.

In KBS, a model consists of a number of entities and a set of relations among the various entities. A

model is said to be consistent if all the specified relations are represented correctly. For example,

consider the relationship between the schemata: M1 and 01. M1 represents a machine with a slot

OPERATION with a value 01. This can be interpreted as: machine M1 performs operation 01. The

I_&HNEE0T_

23

.CUPPENT OUEPY COKNANDS

1

Figure 5-8: Display of An Order Query

schema 01 reresents an operation and it has a slot PERFORMED-BY with a value: M. This can be
interpreted as operation 01 is performed by machine M1. If the slot values were different, the model

could have been inconsistent.

A model is said to be complete it all the schemata that participate in a given scenario are defined in

the database, and the slots in the simulation have values. For example, if we are interested in
studying the congestion characteristics in a given work area, we should make sure that the database
contains definitions of all the machines that are supposed to be located in that work area, and each
machine has a service time.

Before a model can be used, it should be checked for consistency and completeness. First order
predicate calculus is ideally suited for this purpose. In the version of this language implemented for
KBS, each consistency and completeness constraint is defined as a formula in a first-order prediciate

. calculus-like language.

These predicates may be of the universal type where the predicate must be true for all members of

UItec 000.7 2

4ielwOW :0

10apuc 00-N 17 2 2i =

24

*BRREDBORRD-PLANT 083: 15: 5t

17'

Figue 5-: PcoardFactry Lyou
78.1

*~~~~~~~~~~CPL aIL set, an" exseta typ where theT prdIt m"ta refrsm ebr fasto hrct
* aybea ooea eprssoninolin te wotpe o pedcaesmetine erler Acoplt

* deiniion f te lnguae i givn blow

25

~ "~--PLF~~tI603: 194

.4-

26

<predicate> ::=<for-all predicate>
I<there-exlsts predicate>
Ilmplication predicate>
I(and <predicate> ...)
I(or <predicate> ...)

" <for-all predicate> ::- (for-all <argument list>)
<there-exists predicate> "- (there-exists <argument list>)
<implication predicate> ::- (IMP <predicate> <predicate>)
<argument list> :: < (variable> <set description> <predicate>
<set description> ::a (UNION <set description>)

I(INTERSECTION <set description>)
I(VIEWED-AS <view-type> <schema type>)
I<function>

<view-type> ::a is-a I instance

A consistency constraint relating the machines and queues in the PCBOARD simulation model may
be specified as:

(for-all 'machine '(VIEWED-'AS instance discrete-machine)
'(there-exists 'queue '(VIEWED-AS instance queue)

'(and (machine.INPUT-Q - queue)
(queue.DESTINATION - machine))))

This constraint may be interpreted as: for all machines of the type discrete-machine, there
should exist schemata of the type queue such that the schemata have consistent values for the slots:
INPUT-Q and DESTINATION.

A completeness constraint in PCBOARD simulation model may be specified as:

(for-all 'work-area '(VIEWED-AS instance work-area)
'(for-all 'local-machine '(work-area•LOCAL-MACHINES)

'(there-exists 'm '(VIEWED-AS instance machine)
1(m- local-machine))))

The above constraint may be interpreted as: for all schemata of the type work-area, there should be a
schema of the type machine for each value of the slot LOCAL-MACHINES in the work-area schema. If
this constraint fails, the model is said to be incomplete.

For each constraint, KBS evaluates it and reports whether it was satisfied or whether it failed. In
case of a constraint failure the interpreter provides a trace facility to determine the source of failure.

"4 By using the interpreter, we were able to discover a number of missing schemata, and schemata with
inconsistent slot values in the PCBOARD model.

A model is validated by translating the specified constraints into schemata (figures 6-1 and 6-2).
Hence, constraints are recursively defined in SRL, allowing constraints to check themselves.

In the Intelligent Management System (Fox, 1981), models are used to support more than one

function, e.g., scheduling, planning, accounting. Hence, the consistency and completeness of a

27

{{ for-all
VARIABLE:

comment: (range variable)
SET:

comment: (schema set)
PREDICATE:

comment: (constraint)
"* EXCEPTION:

comment: (schemata violating the constraint)
RESULT:

comment: (result of predicate evaluation]
TRACE:

comment: (schemata to trace failures)))

Figure 6-1: for-all schema

{{ there-exists
VARIABLE:

SET:
PREDICATE:

RESULT:

TRACE:))

Figure 6-2: there-exists schema

I4
model is dependent on its use. Each IMS function (module) is described by a schema4 , and includes
a list of consistency and completeness constraints that the model must satisfy before executing the
function.

7. Multi-level Simulation
In conventional modeling approaches, each model is constructed at a given level of abstraction. If

we need a model at a different level of abstraction, it has to be reimplemented. In this approach, we
can specify various levels of abstraction. For example, production of a turbine blade can be modelled

44
4 An initial version of the of a module description language: OOL is described in (Fox, 1979b).

I-

28

by specifying a lineup: forge, straighten, machining as the set of operations. This model can be
realized by specifying an agent for performing each of the above operations. There may be several
operations which are part of each of the above operations. For example, the operation machining

-C shown in figure 7-1 may consist of the sub-operations: milling, grinding and polishing. If a model is
needed for studying the effect of replacing a grinding machine by another, it implies that the
operation machining should be expanded into the set of suboperations specified the value of the slot
SUBOPERATIONS in machining. This is shown in figures 7-2 7-3 and 7-4.

{{ machining
{ PART-OF blade-production }

{ INSTANCE operation
PERFORMED-BY: machinel
PREVIOUS-OPERATION: straightening
NEXT-OPERATION: nil
SUB-OPERATION: (milling grinding polishing) }

Figure 7-1: machining Schema

{{ milling
{ SUB-OPERATION-OF machining)

{ INSTANCE operation
PERFORMED-BY: milling
PREVIOUS-OPERATION: straightening
NEXT-OPERATION: grinding
SUB-OPERATION: nil)))

Figure 7-2: milling Schema

From figures 7-2, 7-3 and 7-4, the slot: PREVIOUS-OPERATION in each schema reflects the fact that

only the operation: machining is expanded into its sub-operations. The schemata representing
consistency can make sure that levels of abstraction applied to different classes of schemata will not
conflict with each other. For example if the operation: straightening is also expanded the slot:
PREV-OPERATION in the schema:milling should be appropriately changed.

The levels of abstraction can be specified by the model builder by explicitly instantiating the

29

{{ grinding
{ SUB-OPERATION-OF machining)

{ INSTANCE operation
PERFORMED-BY: grinder1
PREVIOUS-OPERATION: milling
NEXT-OPERATION: polishing
SUB-OPERATION: nil } }

Figure 7-3: grinding Schema

{{ polishing
{ SUB-OPERATION-OF machining)

{ INSTANCE operation
PERFORMED-BY: m-polisher
PREVIOUS-OPERATION: grinding
NEXT-OPERATION: nil
SUB-OPERATION: nil) }

Figure 7-4: polishing Schema

schemata representing various components of the model or by specifying the goals/performance
measures which will be mapped into the appropriate level. The current implementation of KBS lacks
the last mentioned facility.

8. Conclusion
In this paper we took the view that a simulation model need not be explicitly constructed, but rather

be derived from a knowledge base. We also show that a suitable knowledge base can be
constructed using the SRL knowledge representation facility. It also demonstrates that model
acquisition can be accomplished by the instantiation of generic schemata found in a library for a
specific domain. Events are represented as rules associated with schemata which provide a
convenient method for specifying various actions in the model. KBS also provides a convenient
method for selectively instrumenting the model for collection of performance statistics. Because of
the schema representation of the model, model perusal, database query and integration with other
modules such as a graphics display can easily be accomplished.

i

30

Another important feature of KBS is the consistency and completeness module which can be used
to enforce model constraints. This will aid in the model acquisition process by reminding the model
builder of the missing entities and conflicting information.

Future extensions planned for KBS include features to provide a facility for combined discrete-

continuous modeling, distributed simulation, and a natural language interface for model acquisition,
query, and specification of goals/performance measures.

9. References

Birtwistle G. The DEMOS DiscreteEvent Package, Proceedings of the Summer Computer Simulation
Conference, 1980, pp 179-183.

Bobrow D., and T. Winograd. KRL: Knowledge Representation Language, Cognitive Science, Vol 1,
No. 1, 1977.

Brachman R.J. A Structural Paradigm for Representing Knowledge, (Ph.D. Thesis), Harvard
University, May 1977.

Burns, J.E. Interactive Conversational Formulation of Dynamical Models by Computer Assistance,
Proceedings of the Summer Computer Simulation Conference, Seattle WA, 1980,
pp. 157-161.

Dahl. SIMULA: A Language for Programming and Description of Discrete Event System. User's
Manual, Norwegian Computer Center, 1967.

Fahlman S.E. A System for Representing and Using Real-World Knowledge. (Ph.D. Thesis), Artificial
Intelligence Laboratory, MIT, Al-TR-450, 1977.

" Foderaro J.K. The FRANZ LbSP Marij.sl. Department of Computer Science. University of California at
Berkeley, 1980.

" Fox M.S. On Inheritance in Knowledge Representation. Proceedings of the Sixth International Joint
4 Conference on Artificial Intelligence, Tokyo Japan, 1979a.

Fox M.S. Organization Structuring: Designing Large, Complex Software. Technical Report CMU-
S.-79.155, Computer Science Department, Carnegie-Mellon University,

Pittsburgh, PA, 1979b.

L* Fox M.S. The Intelligent Management System: An Overview. Technical Report CMU-RI-TR-81-4,
Robotics Institute, Carnegie-Mellon University, Pittsburgh, PA, July 1981.

Fox M.S. SRL: Schema Representation Language. Technical Report, Robotics Institute, Carnegie-
ia Mplion University, Pittsburgh PA, in preparation, 1981.

Godberson H.P. and Meyer, B.E. A Net Simulation Language. Proceedings of the Summer Computer

31

Simulation Conference, Seattle WA, 1980, pp. 188-193.

IBM, GPSS/360 Introductory User's Manual. GH20-0304-4, 1973.

Kiviat P.J., Villanueva, R., Markowitz, H.M. The SIMSCRIPT II Programming Language, Prentice- Hall,
1969.

' Klahr P. and W.S. Fought. Knowledge-Based Simulation. Proceedings of the First Annual Conference
of the American Association for Artificial Intelligence, Stanford CA, 1980, pp.
181-183.

Pritsker A.A.B. The GASP IV Simulation Language, New York: John Wiley and Sons, 1974.

Pritsker A.A.B. Modeling and Analysis using Q-GERT networks. New York: John Wiley and Sons,
1977.

Reddy Y.V. and Bryan, R.H. DESPL/1: A PL/1 Based Simulation Language. Proceedings of the
Summer Computer Simulation Conference, Seattle WA, 1973, pp. 100-106.

Roberts D.S. and Scheir, J.S. IMS: A Simulation Language which facilitates modeling and Analysis.
Proceedings of the Summer Computer Simulation Conference, Seattle WA, 1980,
pp. 36-41.

Sauer C.H. Characterization and Simulation of Generalized Queueing Networks. RC6057, IBM
Research, Yorktown Heights, NY, 1978.

Spearman M.L. Dynamic Interactive Simulation: Simulation as a Tactical Decision Making Tool.
Proceedings of the Summer Computer Simulation Conference, Seattle WA, 1980,
pp. 657.659.

Wendt S. BORIS: A new General Purpose Interactive Simulator for Hierarchical Models of Discrete
Systems. Proceedings of the Summer Computer Simulation Conference, Seattle
WA, 1980, pp. 50-55.

Zisman M.D. Use of Production Systems for modeling Concurrent Processes. Pattern Directed
Inference Systems, Waterman, Hayes-Roth, & Lenat (Eds.), Academic Press,
1978, pp. 53-68.

4.

1~*'>

K I

* * II

*44~.
4$

V

4* 4 *4~ I
-~ 44 -

'.4

E ".* 4.

qf.~ 4

~4~44~4~ .~T- - j

, 4.~r

